跳到主要内容

Chapter 50: Hedgehog Pathway and Morphogen Gradients

"Hedgehog signaling is ψ's molecular ruler—creating gradients of information that measure distance and specify position, transforming spatial coordinates into cellular identities."

50.1 The Morphogenetic Field

The Hedgehog pathway represents ψ's solution to positional information. Through graded signaling from localized sources, this pathway creates morphogen gradients that pattern developing tissues.

Definition 50.1 (Hedgehog Proteins): Hh={Sonic (Shh),Indian (Ihh),Desert (Dhh)}\text{Hh} = \{\text{Sonic (Shh)}, \text{Indian (Ihh)}, \text{Desert (Dhh)}\}

Three mammalian hedgehog genes.

50.2 The Dual Lipidation

Theorem 50.1 (Hh Modification): Hh+Cholesterol+Palmitate=Hhlipidated\text{Hh} + \text{Cholesterol} + \text{Palmitate} = \text{Hh}_{\text{lipidated}}

Double lipid modification for membrane association.

50.3 The Patched Inhibition

Equation 50.1 (Default Repression): PtchSmoPathway OFF\text{Ptch} \dashv \text{Smo} \rightarrow \text{Pathway OFF}

Patched constitutively inhibiting Smoothened.

50.4 The Primary Cilium

Definition 50.2 (Signaling Antenna): Cilium=Microtubule core+Hh components\text{Cilium} = \text{Microtubule core} + \text{Hh components}

Specialized signaling compartment.

50.5 The Smoothened Activation

Theorem 50.2 (Derepression): Hh+PtchPtch internalizationSmoactive\text{Hh} + \text{Ptch} \rightarrow \text{Ptch internalization} \rightarrow \text{Smo}_{\text{active}}

Ligand removing inhibition.

50.6 The Gli Processing

Equation 50.2 (Proteolytic Switch): Gli3fullNo HhGli3repressor\text{Gli3}_{\text{full}} \xrightarrow{\text{No Hh}} \text{Gli3}_{\text{repressor}} Gli2/3fullHhGliactivator\text{Gli2/3}_{\text{full}} \xrightarrow{\text{Hh}} \text{Gli}_{\text{activator}}

Bifunctional transcription factors.

50.7 The Gradient Formation

Definition 50.3 (Morphogen Spread): [Hh](x)=[Hh]0exp(x/λ)[\text{Hh}](x) = [\text{Hh}]_0 \exp(-x/\lambda)

Exponential decay from source.

50.8 The Threshold Responses

Theorem 50.3 (French Flag Model): Cell fate={Aif [Hh]>θ1Bif θ2<[Hh]<θ1Cif [Hh]<θ2\text{Cell fate} = \begin{cases} \text{A} \quad \text{if } [\text{Hh}] > \theta_1 \\ \text{B} \quad \text{if } \theta_2 < [\text{Hh}] < \theta_1 \\ \text{C} \quad \text{if } [\text{Hh}] < \theta_2 \end{cases}

Concentration thresholds specifying fate.

50.9 The Feedback Control

Equation 50.3 (Pathway Autoregulation): Hh signalingPtchSensitivity\text{Hh signaling} \rightarrow \uparrow\text{Ptch} \rightarrow \downarrow\text{Sensitivity}

Negative feedback limiting response.

50.10 The Dispatched Function

Definition 50.4 (Hh Secretion): Disp+HhlipidatedHh release\text{Disp} + \text{Hh}_{\text{lipidated}} \rightarrow \text{Hh release}

Specialized secretion machinery.

50.11 The Cancer Connection

Theorem 50.4 (Oncogenic Activation): Ptch lossSmo mutationConstitutive pathway\text{Ptch loss} \vee \text{Smo mutation} \rightarrow \text{Constitutive pathway}

Basal cell carcinoma and medulloblastoma.

50.12 The Gradient Principle

The Hedgehog pathway embodies ψ's principle of positional information—creating concentration gradients that encode spatial coordinates, transforming distance into developmental decisions.

The Morphogen Equation: ψposition=0x1λexp(x/λ)dx=1exp(x/λ)\psi_{\text{position}} = \int_0^x \frac{1}{\lambda} \exp(-x'/\lambda) dx' = 1 - \exp(-x/\lambda)

Position encoded by integrated exposure.

Thus: Hedgehog = Gradient = Position = Pattern = ψ


"Through Hedgehog, ψ creates molecular landscapes—concentration hills and valleys that cells read like topographic maps, each position corresponding to a different fate. In these gradients, space becomes information, distance becomes destiny."