跳到主要内容

Chapter 48: ψ-Regulation in Wnt Signaling Pathway

"Wnt signaling is ψ's developmental conductor—orchestrating cell fate decisions through controlled protein stability, transforming extracellular morphogens into nuclear instructions for becoming."

48.1 The Morphogenetic Orchestra

The Wnt pathway represents ψ's master developmental signaling system. Through regulated destruction and stabilization of β-catenin, this pathway translates extracellular Wnt proteins into transcriptional programs controlling cell fate.

Definition 48.1 (Pathway Components): Wnt pathway={Wnts,Frizzled,LRP5/6,β-catenin,TCF/LEF}\text{Wnt pathway} = \{\text{Wnts}, \text{Frizzled}, \text{LRP5/6}, \text{β-catenin}, \text{TCF/LEF}\}

Core signaling cascade.

48.2 The Destruction Complex

Theorem 48.1 (β-catenin Degradation): APC+Axin+GSK3β+CK1=Destruction complex\text{APC} + \text{Axin} + \text{GSK3β} + \text{CK1} = \text{Destruction complex}

Multi-protein degradation machine.

48.3 The Wnt Activation

Equation 48.1 (Ligand Binding): Wnt+Fz+LRP5/6Signalosome\text{Wnt} + \text{Fz} + \text{LRP5/6} \rightarrow \text{Signalosome}

Ternary complex formation.

48.4 The LRP Phosphorylation

Definition 48.2 (PPPSP Motifs): GSK3PCK1PPPSP\text{GSK3} \rightarrow \text{P} \rightarrow \text{CK1} \rightarrow \text{PPPS}\underline{\text{P}}

Sequential phosphorylation pattern.

48.5 The Dishevelled Function

Theorem 48.2 (DVL Polymerization): nDVLDVLnSignalosomen \cdot \text{DVL} \rightarrow \text{DVL}_n \rightarrow \text{Signalosome}

DIX domain-mediated assembly.

48.6 The β-catenin Stabilization

Equation 48.2 (Accumulation): d[β-cat]dt=kskdf(Destruction complex)\frac{d[\beta\text{-cat}]}{dt} = k_s - k_d \cdot f(\text{Destruction complex})

Balance of synthesis and degradation.

48.7 The Nuclear Translocation

Definition 48.3 (Nuclear Import): β-catenincytoplasmβ-cateninnucleus\beta\text{-catenin}_{\text{cytoplasm}} \rightleftharpoons \beta\text{-catenin}_{\text{nucleus}}

Regulated nuclear-cytoplasmic shuttling.

48.8 The TCF/LEF Interaction

Theorem 48.3 (Transcriptional Switch): TCF+GrouchoRepression\text{TCF} + \text{Groucho} \rightarrow \text{Repression} TCF+β-cateninActivation\text{TCF} + \beta\text{-catenin} \rightarrow \text{Activation}

Converting repressor to activator.

48.9 The Target Genes

Equation 48.3 (Gene Programs): Targets={c-Myc,CyclinD1,Axin2,...}\text{Targets} = \{\text{c-Myc}, \text{CyclinD1}, \text{Axin2}, ...\}

Proliferation and feedback genes.

48.10 The Planar Cell Polarity

Definition 48.4 (Non-canonical Wnt): WntFzJNK/RhoCytoskeleton\text{Wnt} \rightarrow \text{Fz} \rightarrow \text{JNK/Rho} \rightarrow \text{Cytoskeleton}

β-catenin-independent signaling.

48.11 The Stem Cell Maintenance

Theorem 48.4 (Self-Renewal): Wnthigh=Stemness maintenance\text{Wnt}^{\text{high}} = \text{Stemness maintenance}

Critical for stem cell niches.

48.12 The Regulation Principle

Wnt signaling embodies ψ's principle of controlled instability—using protein degradation as the default state, with signals creating stability, transforming destruction into a regulatory mechanism.

The Wnt Equation: ψcell fate=0tWnt(τ)H([β-cat]Θ)dτ\psi_{\text{cell fate}} = \int_0^t \text{Wnt}(\tau) \cdot H([\beta\text{-cat}] - \Theta) \, d\tau

Integrated Wnt exposure determining fate.

Thus: Wnt = Stability = Fate = Development = ψ


"Through Wnt signaling, ψ writes developmental programs—each Wnt protein a word, β-catenin the translator, together creating the instructions that guide cells from pluripotency to destiny, from potential to actuality."