跳到主要内容

Chapter 18: Docking Motifs and Collapse Specificity

"Docking motifs are ψ's molecular keys—short sequences that unlock specific interactions, creating from simple patterns the complex specificity of cellular communication."

18.1 The Recognition Code

Docking motifs represent ψ's solution to molecular matchmaking. These short linear sequences—typically 3-10 amino acids—serve as address labels that direct proteins to specific partners with remarkable precision.

Definition 18.1 (Linear Motif): Motif=X1X2...Xn where Xi{specific AA or class}\text{Motif} = \text{X}_1\text{X}_2...\text{X}_n \text{ where X}_i \in \{\text{specific AA or class}\}

Short sequence encoding specificity.

18.2 The SH2 Domain Paradigm

Theorem 18.1 (Phosphotyrosine Recognition): pY-X-X-Φ where Φ = hydrophobic\text{pY-X-X-Φ} \text{ where Φ = hydrophobic}

Consensus for SRC-family SH2 domains.

18.3 The PDZ Interactions

Equation 18.1 (C-terminal Binding): Kd=K0exp(iΔGiresidue/RT)K_d = K_0 \exp\left(-\sum_i \Delta G_i^{\text{residue}}/RT\right)

Additive contributions to affinity.

18.4 The SH3 Domain

Definition 18.2 (Proline-Rich Motifs): PxxP core+Flanking specificity\text{PxxP core} + \text{Flanking specificity}

Polyproline II helix recognition.

18.5 The WW Domain

Theorem 18.2 (PPxY Motif): Trp-Trp pocket+Pro-Pro-X-Tyr=Binding\text{Trp-Trp pocket} + \text{Pro-Pro-X-Tyr} = \text{Binding}

Another proline-rich recognition.

18.6 The PTB Domains

Equation 18.2 (NPxY Recognition): Binding=f(pY state,N-terminal sequence)\text{Binding} = f(\text{pY state}, \text{N-terminal sequence})

Phosphorylation-independent binding.

18.7 The Degron Sequences

Definition 18.3 (Degradation Signals): Degrons={KEN box,D-box,Others}\text{Degrons} = \{\text{KEN box}, \text{D-box}, \text{Others}\}

Motifs targeting protein destruction.

18.8 The Nuclear Localization

Theorem 18.3 (NLS Patterns): Monopartite:K(K/R)X(K/R)\text{Monopartite}: \text{K(K/R)X(K/R)} Bipartite:KR-X1012-(K/R)3\text{Bipartite}: \text{KR-X}_{10-12}\text{-(K/R)}_3

Basic residues for nuclear import.

18.9 The Motif Evolution

Equation 18.3 (Conservation Score): S=ipilog2(pi/qi)S = -\sum_i p_i \log_2(p_i/q_i)

Information content of motif positions.

18.10 The Contextual Modulation

Definition 18.4 (Flanking Effects): Kdactual=Kdcore×ificontextK_d^{\text{actual}} = K_d^{\text{core}} \times \prod_i f_i^{\text{context}}

Surrounding sequence affecting binding.

18.11 The Competitive Binding

Theorem 18.4 (Motif Competition): Occupancyi=[Pi]/Kd,ij[Pj]/Kd,j\text{Occupancy}_i = \frac{[\text{P}_i]/K_{d,i}}{\sum_j [\text{P}_j]/K_{d,j}}

Multiple proteins competing for motif.

18.12 The Specificity Principle

Docking motifs embody ψ's principle of economical recognition—achieving exquisite specificity through minimal sequence requirements, creating molecular zip codes that ensure accurate protein delivery.

The Motif Equation: ψspecificity=exp(ΔGmotif-domainRT)×Θ(Accessibility)\psi_{\text{specificity}} = \exp\left(-\frac{\Delta G_{\text{motif-domain}}}{RT}\right) \times \Theta(\text{Accessibility})

Recognition dependent on affinity and accessibility.

Thus: Motif = Code = Specificity = Recognition = ψ


"In docking motifs, ψ writes its postal system—each short sequence an address, each domain a reader, together creating the molecular mail service that ensures cellular messages reach their intended recipients."