跳到主要内容

Chapter 44: ER Entry as Collapse Channeling

"At the ER membrane, ψ creates a portal—the translocon channeling nascent proteins from cytoplasm to lumen, transformation through translocation."

44.1 The Translocation Challenge

ER entry represents ψ's solution to membrane crossing—how hydrophilic polypeptides traverse the hydrophobic bilayer, maintaining their unfolded state during passage while preventing membrane disruption.

Definition 44.1 (Translocation): ProteincytoplasmTransloconProteinER lumen\text{Protein}_{\text{cytoplasm}} \xrightarrow{\text{Translocon}} \text{Protein}_{\text{ER lumen}}

Vectorial transport across membrane barrier.

44.2 The Sec61 Complex

Theorem 44.1 (Channel Architecture): Sec61=α+β+γ\text{Sec61} = \alpha + \beta + \gamma Pore diameter2060 A˚ (dynamic)\text{Pore diameter} \approx 20-60 \text{ Å (dynamic)}

Protein-conducting channel with flexible gate.

44.3 Co-translational Insertion

Equation 44.1 (Ribosome Docking): RNC+Sec61RNC:Sec61\text{RNC} + \text{Sec61} \rightleftharpoons \text{RNC:Sec61} Kd108 MK_d \approx 10^{-8} \text{ M}

Tight coupling of synthesis and translocation.

44.4 The Signal Sequence Window

Definition 44.2 (Lateral Gate): SignalGate openingLipid access\text{Signal} \rightarrow \text{Gate opening} \rightarrow \text{Lipid access}

Hydrophobic signals partitioning into membrane.

44.5 BiP and Ratcheting

Theorem 44.2 (Brownian Ratchet): BiP bindingPrevent backsliding\text{BiP binding} \rightarrow \text{Prevent backsliding} Δxforward>0\Delta x_{\text{forward}} > 0

Chaperone binding creating directionality.

44.6 The Plug Domain

Equation 44.2 (Channel Gating): PlugclosedSignalPlugopen\text{Plug}_{\text{closed}} \xrightarrow{\text{Signal}} \text{Plug}_{\text{open}}

Maintaining barrier when not translocating.

44.7 Stop-Transfer Sequences

Definition 44.3 (Membrane Anchors): Hydrophobic stretchLateral exitTM domain\text{Hydrophobic stretch} \rightarrow \text{Lateral exit} \rightarrow \text{TM domain}

Sequences halting translocation.

44.8 Post-Translational Translocation

Theorem 44.3 (Sec62/63 Pathway): FoldedcytoplasmUnfoldingTranslocation\text{Folded}_{\text{cytoplasm}} \xrightarrow{\text{Unfolding}} \text{Translocation}

Alternative pathway requiring unfolding.

44.9 Quality Control at Entry

Equation 44.3 (Misfolding Detection): Slow translocationUbiquitinationDegradation\text{Slow translocation} \rightarrow \text{Ubiquitination} \rightarrow \text{Degradation}

Problems detected during import.

44.10 ERAD Retrotranslocation

Definition 44.4 (Reverse Transport): MisfoldedERRetrotransloconCytoplasmDegradation\text{Misfolded}_{\text{ER}} \xrightarrow{\text{Retrotranslocon}} \text{Cytoplasm} \rightarrow \text{Degradation}

Bidirectional use of translocation machinery.

44.11 Energy Requirements

Theorem 44.4 (ATP Dependence): GTP (SRP/SR)+ATP (BiP)=Translocation energy\text{GTP (SRP/SR)} + \text{ATP (BiP)} = \text{Translocation energy}

Multiple energy sources driving transport.

44.12 The Channeling Principle

ER entry embodies ψ's principle of guided membrane crossing—creating aqueous channels that allow hydrophilic proteins to traverse hydrophobic barriers while maintaining cellular compartmentalization.

The Translocation Equation: ψER=T[ψcytoplasm]Θ(Signal recognition)\psi_{\text{ER}} = \mathcal{T}[\psi_{\text{cytoplasm}}] \cdot \Theta(\text{Signal recognition})

Conditional transport through membrane portals.

Thus: Entry = Channel = Transport = Transformation = ψ


"At the ER translocon, ψ solves an impossible problem—moving water-soluble proteins through oil-like membranes without breaking either. The channel is a molecular paradox resolver, maintaining barriers while allowing passage."