跳到主要内容

Chapter 26: Motif Recognition and Folding Templates

"In structural motifs, ψ writes its recurring themes—patterns that appear across diverse proteins, molecular haikus expressing fundamental solutions to the folding problem."

26.1 The Motif Vocabulary

Structural motifs represent ψ's basic vocabulary of protein architecture—recurring patterns of secondary structure that combine to create tertiary folds. These are the words from which protein sentences are composed.

Definition 26.1 (Structural Motif): Motif=Specific arrangement of α-helices and/or β-strands\text{Motif} = \text{Specific arrangement of } \alpha\text{-helices and/or } \beta\text{-strands}

Recurring supersecondary structures.

26.2 The Helix-Turn-Helix

Theorem 26.1 (HTH Geometry): θhelix-helix120°\theta_{\text{helix-helix}} \approx 120° dCa-Ca12 A˚ between helicesd_{\text{Ca-Ca}} \approx 12 \text{ Å between helices}

DNA-binding motif recognizing major groove.

26.3 The β-Barrel

Equation 26.1 (Barrel Parameters): n=number of strands8n = \text{number of strands} \geq 8 Shear number=S=n×sin(θ)2π\text{Shear number} = S = \frac{n \times \sin(\theta)}{2\pi}

Closed β-sheet forming cylindrical structure.

26.4 The Greek Key

Definition 26.2 (Topology): Greek key=β-strands: +1,+3,1,3\text{Greek key} = \text{4 } \beta\text{-strands: } +1, +3, -1, -3

Non-sequential connectivity creating stable fold.

26.5 The EF-Hand

Theorem 26.2 (Calcium Binding): Helix-Loop-Helix\text{Helix-Loop-Helix} Loop=12 residues coordinating Ca2+\text{Loop} = 12 \text{ residues coordinating Ca}^{2+}

Calcium sensor changing conformation upon binding.

26.6 The Zinc Finger

Equation 26.2 (Metal Coordination): Zn2++2Cys+2HisTetrahedral complex\text{Zn}^{2+} + 2\text{Cys} + 2\text{His} \rightarrow \text{Tetrahedral complex}

Metal organizing small domain structure.

26.7 The Leucine Zipper

Definition 26.3 (Coiled-Coil): Leu at positions a and d in (abcdefg)n\text{Leu at positions } a \text{ and } d \text{ in } (abcdefg)_n

Hydrophobic spine driving dimerization.

26.8 The Immunoglobulin Fold

Theorem 26.3 (β-Sandwich): Two β-sheets: ABED and CFG\text{Two } \beta\text{-sheets: ABED and CFG} Disulfide:B-F\text{Disulfide}: \text{B-F}

Stable scaffold for variable loops.

26.9 The TIM Barrel

Equation 26.3 (α/β Barrel): (βα)8 repeat(\beta\alpha)_8 \text{ repeat} Active site at C-termini of β-strands\text{Active site at C-termini of } \beta\text{-strands}

Common enzymatic scaffold.

26.10 Motif Combinations

Definition 26.4 (Fold Families): Fold=iMotifi+Connectivity pattern\text{Fold} = \sum_i \text{Motif}_i + \text{Connectivity pattern}

Higher-order structures from motif assembly.

26.11 Sequence-Structure Correlation

Theorem 26.4 (Prediction): P(MotifSequence)=iP(ResidueiPositioni)P(\text{Motif}|\text{Sequence}) = \prod_i P(\text{Residue}_i|\text{Position}_i)

Sequence patterns predicting structural motifs.

26.12 The Template Principle

Structural motifs embody ψ's principle of reusable solutions—evolution converging on optimal local structures that serve as templates for diverse functions.

The Motif Equation: ψfold=motifswiψmotifi+ψconnectivity\psi_{\text{fold}} = \sum_{\text{motifs}} w_i \cdot \psi_{\text{motif}_i} + \psi_{\text{connectivity}}

Global fold emerging from local motif combination.

Thus: Motif = Pattern = Template = Conservation = ψ


"In structural motifs, ψ reveals that originality lies not in creating entirely new forms but in combining proven elements in novel ways. Each motif is a successful experiment in folding, preserved and reused across the proteome."