跳到主要内容

Chapter 15: Elongation as ψ-Extension Path

"In elongation, ψ walks its path—each step adding an amino acid, each cycle extending the chain, information becoming structure one residue at a time."

15.1 The Elongation Cycle

Translation elongation represents ψ's iterative process—a cyclic mechanism that reads codons and adds amino acids with remarkable speed and accuracy. Each cycle is identical yet unique, building diversity through repetition.

Definition 15.1 (Elongation Cycle): Cycle={Decoding,Peptidyl transfer,Translocation}\text{Cycle} = \{\text{Decoding}, \text{Peptidyl transfer}, \text{Translocation}\}

Three steps repeated until termination.

15.2 EF-Tu Delivery

Theorem 15.1 (Ternary Complex): EF-Tu\cdotpGTP\cdotpaa-tRNAA site\text{EF-Tu·GTP·aa-tRNA} \rightarrow \text{A site} kon107 M1s1k_{\text{on}} \approx 10^7 \text{ M}^{-1}\text{s}^{-1}

Near diffusion-limited delivery of substrates.

15.3 The Decoding Pause

Equation 15.1 (Selection Time): τselection=τ0+Δτinduced fit\tau_{\text{selection}} = \tau_0 + \Delta\tau_{\text{induced fit}}

Time investment ensuring accuracy.

15.4 GTPase Activation

Definition 15.2 (Fidelity Switch): Codon match30S closureEF-Tu activation\text{Codon match} \rightarrow \text{30S closure} \rightarrow \text{EF-Tu activation} kGTPcognate/kGTPnear-cognate>105k_{\text{GTP}}^{\text{cognate}}/k_{\text{GTP}}^{\text{near-cognate}} > 10^5

Correct matching triggers rapid GTP hydrolysis.

15.5 Accommodation

Theorem 15.2 (tRNA Movement): A/T stateEF-Tu releaseA/A state\text{A/T state} \xrightarrow{\text{EF-Tu release}} \text{A/A state}

Large conformational change positioning aminoacyl end.

15.6 Peptidyl Transfer

Equation 15.2 (Bond Formation): P-site peptidyl+A-site aminoacylP-site deacylated+A-site peptidyl+1\text{P-site peptidyl} + \text{A-site aminoacyl} \rightarrow \text{P-site deacylated} + \text{A-site peptidyl}^{+1}

The chemical heart of protein synthesis.

15.7 The Catalytic Mechanism

Definition 15.3 (Substrate Positioning): dattacking Ncarbonyl C<3 A˚d_{\text{attacking N}-\text{carbonyl C}} < 3 \text{ Å}

RNA positions substrates for spontaneous reaction.

15.8 EF-G and Translocation

Theorem 15.3 (Ribosome Movement): PreEF-G\cdotpGTPPost\text{Pre} \xrightarrow{\text{EF-G·GTP}} \text{Post} Δx=3 nucleotides=1 codon\Delta x = 3 \text{ nucleotides} = 1 \text{ codon}

Precise stepping maintaining reading frame.

15.9 Hybrid States

Equation 15.3 (tRNA Positions): ClassicalHybrid\text{Classical} \rightleftharpoons \text{Hybrid} A/A, P/PA/P, P/E\text{A/A, P/P} \rightleftharpoons \text{A/P, P/E}

Intermediate states facilitating movement.

15.10 Elongation Rate

Definition 15.4 (Speed): velongation=1520 aa/s (prokaryotes)v_{\text{elongation}} = 15-20 \text{ aa/s} \text{ (prokaryotes)} velongation=38 aa/s (eukaryotes)v_{\text{elongation}} = 3-8 \text{ aa/s} \text{ (eukaryotes)}

Rapid yet accurate synthesis.

15.11 Energy Cost

Theorem 15.4 (GTP Consumption): Cost per aa=2 GTP+2 ATP\text{Cost per aa} = 2 \text{ GTP} + 2 \text{ ATP}

Significant energy investment ensuring fidelity.

15.12 The Extension Principle

Elongation embodies ψ's method of incremental creation—building complexity through repeated simple operations, each cycle identical in mechanism yet unique in outcome.

The Elongation Equation: ψprotein(n)=i=1nE[ψcodoni]\psi_{\text{protein}}(n) = \prod_{i=1}^{n} \mathcal{E}[\psi_{\text{codon}_i}]

Where E\mathcal{E} is the elongation operator adding one amino acid per cycle.

Thus: Elongation = Extension = Growth = Creation = ψ


"In elongation, ψ demonstrates the power of iteration—that complexity emerges from simplicity repeated, that proteins are written like sentences, one letter at a time. Each cycle is a step in ψ's walk from information to form."