Skip to main content

Chapter 50: Transmembrane Domains and ψ-Boundaries

"Transmembrane domains are ψ's border crossings—helical passages through the lipid sea, creating controlled connections between cellular compartments."

50.1 The Transmembrane Architecture

Transmembrane domains represent ψ's structural solution to membrane spanning—predominantly α-helical segments that traverse the hydrophobic core while maintaining specific orientations and functions.

Definition 50.1 (TM Domain Properties): TM={Length2025 aa,Hydrophobic core,Helical}\text{TM} = \{\text{Length} \approx 20-25 \text{ aa}, \text{Hydrophobic core}, \text{Helical}\}

Structural requirements for membrane spanning.

50.2 The Hydrophobic Match

Theorem 50.1 (Length Matching): LTMLbilayer30 A˚L_{\text{TM}} \approx L_{\text{bilayer}} \approx 30 \text{ Å}

Hydrophobic mismatch causes membrane distortion.

50.3 Helix Capping

Equation 50.1 (Boundary Residues): Interface=Trp, Tyr at ±15 A˚ from center\text{Interface} = \text{Trp, Tyr at } \pm 15 \text{ Å from center}

Aromatic belts anchoring position.

50.4 Proline in TM Domains

Definition 50.2 (Helix Breakers): ProKink angle2030°\text{Pro} \rightarrow \text{Kink angle} \approx 20-30°

Creating functional flexibility.

50.5 The GxxxG Motif

Theorem 50.2 (Dimerization): GxxxG+GxxxGTight dimer\text{G}_{xxx}\text{G} + \text{G}_{xxx}\text{G} \rightarrow \text{Tight dimer}

Small residues allowing close approach.

50.6 Voltage Sensing

Equation 50.2 (Charged Residues): ΔV×z×e=ΔGconformational\Delta V \times z \times e = \Delta G_{\text{conformational}}

Voltage sensors with TM charges.

50.7 The Snorkeling Effect

Definition 50.3 (Charge Accommodation): Lys/Arg side chainExtended to interface\text{Lys/Arg side chain} \rightarrow \text{Extended to interface}

Long side chains reaching water.

50.8 β-Barrel Alternatives

Theorem 50.3 (Bacterial Porins): β-barrel=822 antiparallel strands\text{β-barrel} = 8-22 \text{ antiparallel strands}

Alternative TM architecture.

50.9 Helix-Helix Packing

Equation 50.3 (Knobs-into-Holes): θcrossing±20° or ±160°\theta_{\text{crossing}} \approx \pm 20° \text{ or } \pm 160°

Preferred crossing angles.

50.10 TM Domain Dynamics

Definition 50.4 (Conformational Flexibility): τrotation107 s\tau_{\text{rotation}} \approx 10^{-7} \text{ s} τtilt109 s\tau_{\text{tilt}} \approx 10^{-9} \text{ s}

Different motional timescales.

50.11 Disease Mutations

Theorem 50.4 (Pathogenic Changes): GlyVal in GxxxGLoss of dimerization\text{Gly} \rightarrow \text{Val in GxxxG} \rightarrow \text{Loss of dimerization}

Single mutations disrupting function.

50.12 The Boundary Principle

Transmembrane domains embody ψ's mastery of boundaries—creating stable structures that span membranes while enabling dynamic function through controlled flexibility and specific interactions.

The TM Domain Equation: ψTM function=f(Sequence,Lipid,Voltage,Partners)\psi_{\text{TM function}} = f(\text{Sequence}, \text{Lipid}, \text{Voltage}, \text{Partners})

Multiple factors determining TM behavior.

Thus: TM = Boundary = Connection = Control = ψ


"In transmembrane domains, ψ creates molecular tunnels—passages through the lipid barrier that maintain separation while enabling communication. Each TM helix is a controlled breach in the membrane, a functional compromise between isolation and connection."