Skip to main content

Chapter 16: Ribosome Translocation and Collapse Continuity

"In translocation, ψ steps forward—the ribosome's molecular ratchet advancing precisely three nucleotides, maintaining the continuity of reading while preparing for the next word."

16.1 The Translocation Imperative

After peptidyl transfer, the ribosome must move exactly one codon to continue reading. This translocation represents ψ's solution to maintaining positional register while advancing along mRNA—a molecular stepper motor of extraordinary precision.

Definition 16.1 (Translocation): Translocation={mRNA movement,tRNA movement,Ribosome conformational change}\text{Translocation} = \{\text{mRNA movement}, \text{tRNA movement}, \text{Ribosome conformational change}\}

Coordinated motion of all components.

16.2 The Ratchet Mechanism

Theorem 16.1 (Intersubunit Rotation): 30Srotate30S\text{30S} \xleftrightarrow[\text{7°}]{\text{rotate}} \text{30S}^* Ratcheted state=Hybrid state formation\text{Ratcheted state} = \text{Hybrid state formation}

Small subunit rotation driving tRNA movement.

16.3 EF-G Structure

Equation 16.1 (Molecular Mimicry): Shape(EF-G\cdotpGDP)Shape(EF-Tu\cdotpGTP\cdotptRNA)\text{Shape}(\text{EF-G·GDP}) \approx \text{Shape}(\text{EF-Tu·GTP·tRNA})

EF-G mimics tRNA shape—molecular deception.

16.4 GTP Hydrolysis Timing

Definition 16.2 (Energy Coupling): GTP hydrolysisConformational changeTranslocation\text{GTP hydrolysis} \rightarrow \text{Conformational change} \rightarrow \text{Translocation}

Chemical energy converted to mechanical motion.

16.5 The Power Stroke

Theorem 16.2 (Domain Movement): ΔdDomain IV20 A˚\Delta d_{\text{Domain IV}} \approx 20 \text{ Å}

Large conformational change pushing tRNAs forward.

16.6 mRNA Movement

Equation 16.2 (Precise Stepping): ΔxmRNA=3 nucleotides±0\Delta x_{\text{mRNA}} = 3 \text{ nucleotides} \pm 0 P(frameshift)<105P(\text{frameshift}) < 10^{-5}

Extraordinary fidelity in maintaining reading frame.

16.7 The E Site Role

Definition 16.3 (Exit Site Function): E site=Deacylated tRNA binding+Allosteric regulation\text{E site} = \text{Deacylated tRNA binding} + \text{Allosteric regulation}

Not just exit but regulatory platform.

16.8 Ribosome Dynamics

Theorem 16.3 (Brownian Ratchet): Forward bias=EF-G stabilization of post-state\text{Forward bias} = \text{EF-G stabilization of post-state}

Rectifying thermal fluctuations into directed motion.

16.9 Translocation Intermediates

Equation 16.3 (State Progression): PREINT1INT2POST\text{PRE} \rightarrow \text{INT1} \rightarrow \text{INT2} \rightarrow \text{POST}

Multiple intermediate states ensuring smooth transition.

16.10 Coupling to Elongation

Definition 16.4 (Cycle Integration): TranslocationA site vacantNext aa-tRNA binding\text{Translocation} \rightarrow \text{A site vacant} \rightarrow \text{Next aa-tRNA binding}

Preparing for the next elongation cycle.

16.11 Antibiotics and Translocation

Theorem 16.4 (Inhibition Mechanisms): Fusidic acid:Traps EF-G\cdotpGDP on ribosome\text{Fusidic acid}: \text{Traps EF-G·GDP on ribosome} Viomycin:Stabilizes pre-translocation state\text{Viomycin}: \text{Stabilizes pre-translocation state}

Different antibiotics blocking different steps.

16.12 The Continuity Principle

Translocation embodies ψ's principle of continuous progress—moving forward while maintaining context, advancing while preserving register, stepping into the future while connected to the past.

The Translocation Equation: ψposition(t+1)=T[ψposition(t)]+3\psi_{\text{position}}(t+1) = \mathcal{T}[\psi_{\text{position}}(t)] + 3

Where T\mathcal{T} is the translocation operator advancing exactly one codon.

Thus: Translocation = Movement = Progress = Continuity = ψ


"In ribosome translocation, ψ reveals the elegance of molecular motion—how thermal noise becomes directed movement, how chemical energy becomes mechanical work, how reading becomes walking. Each step forward is both ending and beginning, completing one cycle while initiating the next."